Arxius de Miscel·lània Zoològica. Volume 23 (2025) Pages: 33-43

The Asian clam Corbicula fluminea in Ecuador: dispersion and diversity of occupied environments

Lodeiros, C., Gutiérrez Gregoric, D. E., González-Henríquez, N., Hernández-Reyes, D., Rey-Méndez, M., Panta-Vélez, R. P., Bernal-Zambrano, J. J., Darrigran, G.

DOI: https://doi.org/10.32800/amz.2025.23.0033

Download

PDF

Keywords

Bivalve, Invasion, Effects, Impacts, Global distribution, Freshwater

Cite

Lodeiros, C., Gutiérrez Gregoric, D. E., González-Henríquez, N., Hernández-Reyes, D., Rey-Méndez, M., Panta-Vélez, R. P., Bernal-Zambrano, J. J., Darrigran, G., 2025. The Asian clam Corbicula fluminea in Ecuador: dispersion and diversity of occupied environments. Arxius de Miscel·lània Zoològica, 23: 33-43, DOI: https://doi.org/10.32800/amz.2025.23.0033

Reception date:

09/08/2024

Acceptation date:

18/12/2024

Publication date:

30/01/2025

Share

Visits

71

Downloads

36

Documento sin título

Abstract

The Asian clam Corbicula fluminea in Ecuador: dispersion and diversity of occupied environments

Populations of invasive species can have a negative impact on the natural environment and socioeconomic effects of artificial systems. The relationship of Corbicula fluminea with humans, together with the its great adaptive-reproductive capacity, make it one of the most expansive species of invasive bivalves worldwide. Here we report on the dispersion of C. fluminea, and based on genetic analysis we describe the presence and potentially negative effect of this species for the first time in an anthropic environment, an aquaculture facility in Ecuador.

Key words: Bivalve, Invasion, Effects, Impacts, Global distribution, Freshwater

Resumen

La almeja asiática Corbicula fluminea en Ecuador: dispersión y diversidad de ambientes ocupados

Las poblaciones de especies invasoras ocasionan impactos sobre el medio natural y efectos socioeconómicos sobre los sistemas artificiales. La relación que tiene la especie Corbicula fluminea con el ser humano, sumada a su gran capacidad adaptativa-reproductiva, la convierte en una de las más expansivas entre los bivalvos invasores del planeta. El presente estudio señala no solo la dispersión de C. fluminea sino también, a través del análisis genético, la presencia de esta especie por primera vez en un ambiente antrópico en Ecuador, una instalación de acuicultura, y el potencial efecto negativo sobre la misma.

Palabras claves: bivalvos, invasión, efectos, impactos, distribución global, agua dulce

Resum

La cloïssa asiàtica Corbicula fluminea a l’Equador: dispersió i diversitat d'ambients ocupats

Les poblacions d’espècies invasores generen impactes en el medi natural i efectes socioeconòmics en els sistemes artificials. La relació que estableix l’espècie Corbicula lumina amb l’ésser humà, a més de la gran capacitat adaptativa-reproductiva que té, la converteix en una de les més expansives entre els bivalves invasors del planeta. Aquest estudi no tan sols assenyala la dispersió de C. fluminea sinó també, mitjançant l’anàlisi genètica, la presència d’aquesta espècie per primera vegada en un ambient antròpic a l’Equador, una instal·lació d’aqüicultura, i el potencial efecte negatiu en aquesta.

Paraules clau: bivalves, invasió, efectes, impactes, distribució global, aigua dolça

Introduction

A species is considered invasive when it is detected outside its natural geographic area of dispersal, when it is capable of maintaining a self-sustaining population in that new ecosystem, and when it disperses extensively, causing not only an environmental impact but also having a socioeconomic effect (Diagne et al 2022).

Humans have historically transported species from one place to another, leading to two major increases in the exchange and transportation of non-native species, the first at the end of the Middle Ages and the second with the Industrial Revolution (Collado et al 2020). This trend has increased considerably in recent decades and is currently ongoing at a great magnitude and with great diversity from one point to another on the planet. Two factors favor this third increase in the transportation of non-native species. The first of these is globalization, with worldwide trade causing the 'sending' and 'receiving' of 'non-native species' to other regions of the world. (Hulme et al 2008, Hulme 2009). The second main factor is climate change, which impacts and favors the settlement of non-native species in receiving areas. These two factors act synergistically to increase the potential establishment of non-native species (Hess et al 2024). This phenomenon can have great environmental impact and cause significant economic effects. In aquatic ecosystems, the number of invasive species has increased significantly in in recent decades due to the close relationship of non-native species and human activities (Clusa et al 2017).

The Asian freshwater clam, Corbicula fluminea (Müller 1774), is one of the most expansive species of invasive bivalves because its high adaptive-reproductive capacity (Darrigran 2002, Vidinova et al 2021) has allowed it to invade all continents (table 1) except Antarctica (Gama et al 2016), dominating, both lentic and lotic environments worldwide (Darrigran 1992, Lucy et al 2012, Vidinova et al 2021). Given its invasiveness, in South America, its association with human activities (Sousa et al 2008) such as aquaculture, recreational activities such as bait for sports fishing, and transportation for human food, and through various transport vectors (table 2), C. fluminea has become the most invasive freshwater bivalve species in the continent (Darrigran et al 2020), causing significant adverse environmental impact. For example, several species of the genus Corbicula can impact hydrology, biogeochemical cycling and biotic interactions through wide-ranging mechanisms in individuals and ecosystems (Bespalaya et al 2021), and it may have economic effects such as macrofouling in industrial cooling systems (Darrigran 2002).

Table 1. Examples of global distribution of the mollusk Corbicula fluminea, one of the most invasive bivalve species of the 20th century.
Tabla 1. Ejemplos de distribución global del molusco Corbicula fluminea, una de las especies de bivalvos más invasoras del siglo XX.

Table 2. Potential vectors capable of dispersing Corbicula fluminea in South America.
Tabla 2. Vectores potenciales capaces de dispersar la especie Corbicula fluminea en América del Sur.

The origin of the invasive populations of C. fluminea poses a significant challenge due to the low genetic variability of its populations (Gomes et al 2016). In South America, two main invasion lineages have been detected (Gomes et al 2016, Ludwig et al 2024), with the invasive lineage (haplotype) FW5 (morphotype form A/R) showing the greatest distribution in Europe and America. The latter is followed by FW17 (morphotype form C/S), with an intermediate lineage in three sites in Brazil and a population with individuals that presented a new COI haplotype in Brazil (FWBra). Form A has a more trigonal shell, a higher and inflated umbos, thicker and more widely spaced external marginal ribs than form B (present in North America), and a lighter-colored inner shell surface. The form C morphotype has the finest external surface sculpture and the thinnest and least inflated shell of all three New World morphotypes. It is further distinguished from the co-occurring form A morphotype by the latter’s prominent umbo, posterior rostrum, and lighter coloration (Ituarte 1994, Lee et al 2005). The FWBra haplotype has shells with flatter umbos than the other morphotypes (Ludwig et al 2024).

In the present study, genetic analysis certified the presence of C. fluminea for the first time in an anthropic environment in Ecuador. Here we review the presence and dispersion of the species in South America.

Material and methods

The samples of C. fluminea were collected in November 2019 in the province of Manabí, Ecuador, in an aquaculture facility dedicated to the cultivation of the white shrimp Penaeus vannamei Boone, 1931 along with the Pacific fat sleeper fish, Dormitator latifrons (Richardson, 1844), located at the site La Isla, Pechichal commune, San Isidro parish, Sucre municipality (fig. 1; 0° 18' 05.6" S - 80° 11' 34.9" W). The shrimp produce is sent to packing facilities that export to various places worldwide, while the Pacific fat sleeper is exported to Asia or meets local demands.

Fig. 1. Extraction site of the invasive species Corbicula fluminea. Aquaculture system dedicated to the cultivation of white shrimp Penaeus vannamei and Pacific fat sleeper fish Dormitator latifrons, in La Isla, Pechichal commune, San Isidro parish, Sucre municipality, Manabí province, Ecuador.
Fig. 1. Lugar de extracción de la especie invasora Corbicula fluminea. Sistema acuícola dedicado al cultivo del camarón patiblanco Penaeus vannamei, y del chalaco Dormitator latifrons en La Isla, comunidad de Pechichal, parroquia de San Isidro, municipio de Sucre, provincia de Manabí, Ecuador.

The specimens were identified morphologically following the methodology of in Sabapathy-Allen (2019), and total DNA was extracted from about 20 specimens using the 'E.Z.N.A. Mollusk DNA Kit' (Omega Bio-Tek). Partial COI gene PCR products were obtained using the barcoding primer set LCO1490/HCO2198 (Folmer et al 1994) and the modified primers jgLCO1490/jgHCO2198 (Geller et al 2013), purified with the ExoSAP-It kit (Affimetrix) and sequenced using BigDye. v3.1 X terminator kit on ABI 3500 equipment (Thermo Fisher Scientific).

The resulting sequences were trimmed to remove primers. All sequences correspond to the same haplotype, which was compared to GenBank reference sequences using the BLASTN algorithm (Altschul et al 1990) to identify similarities. One sequence, representing the same haplotype from 20 individuals, was deposited in GenBank under the accession number PP716899.

A phylogenetic analysis was carried out to infer the lineage and possible origin of the samples, using as a basis the sequences published by Lee et al (2005), Gomes et al (2016), and Ludwig et al (2024), both about this species and others of the genus Corbicula, and the new genus available in Genbank (as of 04-30-2024) (n = 227). We selected one sequence per haplotype per country (Corbicula spp., n = 75; table 1s in supplementary material) with a length of 560 bp was selected. Phylogenetic analyses were performed following sequence alignment with Clustal. The total length of the analyzed matrix was 560 bp. The data were subjected to phylogenetic analysis using the maximum likelihood (ML) method. ML inference was performed using the PhyML program (Guindon and Gascuel 2003), available on the public web server Phylemon2 (http://phylemon.bioinfo.cipf.es). Statistical support for the resulting phylogenies was assessed by bootstrapping with 1,000 replicates (Felsenstein 1985). All trees were edited with FigTree software.

Table 1s. Corbicula sp. COI gene sequences used in the present work, with Genbank access code and country of origin.
Tabla 1s. Secuencias del gen COI de Corbicula sp. utilizadas en el presente trabajo, con código de acceso Genbank y país de origen.

Results

The present findings represent the first report of C. fluminea for the province of Manabí, reaffirming its distribution and establishment in the river basins (table 3). We also report the first case in Ecuador of the presence of C. fluminea in an artificial culture system of the Pacific white shrimp Penaeus vannamei (Boone, 1931) and the Pacific fat sleeper fish Dormitator latifrons (Richardson, 1844).

Table 3. Sites where Corbicula fluminea has been reported in Ecuador.
Tabla 3. Lugares donde se han registrado ejemplares de Corbicula fluminea en Ecuador.

Among the sequences of C. fluminea available in Genbank, the Blast carried out revealed 100% similarity of the sequence obtained in Ecuador with other representatives, mainly from Europe (fig. 2; table 2s in supplementary material), Asia, and America (Argentina, Brazil, Peru, Ecuador, Mexico, Panama, Cuba and USA). In this study, four haplotypes were identified for the genus Corbicula in South America. The sequence obtained for Ecuador corresponds to the invasive lineage FW5 (form A/R).

Fig. 2. Corbicula spp. phylogenetic tree, based on the COI gene. The sequence from this study was aligned with other sequences from NCBI. Collapsed nodes are indicated by triangles. Values on the tree refer to bootstrap support. The number of sequences per node is shown in parentheses. Nodes with bootstrap values below 50 % were not included. Sequences from Ecuador are shown in red. Other sequences from South and Central America are in green. The text in light blue: sequences from these countries differ in one or two bases of the FW5 haplotype. Color boxes (groups according to Gomes et al (2016): pink: group 1; green: group 2; yellow: group 3; light blue: group 4). In group 3, only one sequence was used for South America (Argentina, Brazil and Colombia) since it is the same haplotype.
Fig. 2. Árbol filogenético de la Corbicula spp., basado en el gen COI. La secuencia de este estudio se ajustó a otras del National Center for Biotechnology Information (NCBI). Los nodos colapsados ​​se indican con triángulos. Los valores en el árbol se refieren al soporte Bootstrap. Entre paréntesis, se indica el número de secuencias por nodo. Los nodos con valores Bootstrap inferiores al 50  % no se incluyeron. En rojo, se indican las secuencias de Ecuador. En verde, se indican otras secuencias de América del Sur y Central. En azul claro, se indican las secuencias de estos países que difieren en una o dos bases del haplotipo FW5. Los recuadros de color (grupos según Gomes et al (2016): rosa, grupo 1; verde: grupo 2; amarillo: grupo 3; azul claro: grupo 4). En el grupo 3, solo se utilizó una secuencia para América del Sur (Argentina, Brasil y Colombia), ya que se trata del mismo haplotipo.

Table 2s. Pairwise genetic divergence (Kimura two-parameter, %) among individuals of Corbicula sp. assessed employing COI gene sequences.
Tabla 2s. Divergencia genética por pares (Kimura de dos parámetros, %) entre individuos de Corbicula p. evaluada empleando secuencias del gen COI.

Discussion

Corbicula fluminea is extensively distributed in South America (Darrigran et al 2020) and is found in several countries. In Ecuador, the species has been reported from the provinces of Esmeraldas, Santo Domingo de los Tsachilas, Los Ríos, and Guayas, with this record being the first report for the province of Manabí, and reaffirming its distribution and establishment in the river basins of Ecuador (table 3). Furthermore, it represents the first case of C. fluminea in an artificial culture system for the Pacific white shrimp, P. vannamei, and the Pacific fat sleeper D. latifrons.

The tree shows a topology similar to that of Lee et al (2005), Gomes et al (2016), and Ludwig et al (2024), with several clades with low support or unresolved, identifying four haplotypes for the genus in South America, three published by Lee et al (2005) and the new haplotype mentioned by Ludwig et al (2024) (FWBra, for Brazil).

The sequence obtained for Ecuador corresponds to the invasive lineage FW5 (form A/R), the most widely distributed lineage in America (Lee et al 2005, Gomes et al 2016, Ludwig et al 2024). It corresponds to the morphotype A/ R; and it has also been detected in Colombia (Ludwig et al 2024). The FW17 lineage (form C/S) has been detected outside the native distribution area, although it has not yet been reported from East Asia. In South America, it is found in Brazil, Colombia, and Argentina (Ludwig et al 2024).

The species C. fluminea presents several characteristics that indicate a high capacity to colonize different limnological environments, explaining its global distribution. Its life cycle favors the ability to invade other systems due to high growth rates, early maturation (Sousa et al 2008), and capacity for androgenesis and self- fertilization (Pigneur et al 2012), thus causing low genetic variability in their populations. The global phylogenetic analysis performed by Pigneur et al (2011) reveals that sexual lineages of Corbicula seem restricted to native areas, while androgenic reproduction is found both in native areas (Pigneur et al 2012) and in all invaded areas (Gomes et al 2016). Androgenic reproduction could have played an important role in the invasive success of Corbicula clams as androgenetic clams are generally hermaphroditic and capable of self-fertilization (Pigneur et al 2012).

In summary, androgenesis is the predominant reproductive mode within the hermaphrodite and invasive lineages of the genus Corbicula, with its ability to reproduce by cloning being a determining factor in its invasive success, having colonized American and European freshwater systems during the 20th century. However, in clams of Corbicula spp. androgenetic genetic mixing between different lineages has also occasionally been observed when the sperm of one lineage fertilizes the oocyte of another. Because of these occasional introgressions, the genetic relationships between Corbicula species remain unclear, and the biogeographic origins of invasive androgenetic lineages are difficult to identify. Despite this genetic mixture between invasive Corbicula lineages, genetic analyses place one of the invasive forms of Corbicula from South America as African (Vastrade et al 2022). However, as previously mentioned, a new COI haplotype (FWBra) was detected in a population from Brazil.

This report is the first to describe the presence of C. fluminea in an aquaculture production system with Pacific white shrimp in polyculture with the Pacific fat sleeper fish. Despite P. vannamei being a species of marine- estuarine origin, its adaptability to very low salinities allow adequate growth, and profitability can be greater when grown with D. latifrons. These production systems have low salinity (2-5‰, JJ Bernal-Zambrano), which allows the existence and proliferation of C. fluminea. Despite being a freshwater species, C. fluminea can tolerate salinities of up to 10-14 ‰ (McMahon 2000), allowing it to colonize upstream areas of estuaries (Franco et al 2012, Ilarri et al 2014) where a high number of shrimp farms are established in Ecuador. Although there is no apparent adverse effect on performance with the presence of C. fluminea, this species is one of those that have a higher filtration rate than other freshwater filter-feeding mollusks (McMahon 1991), Therefore some of the first impacts that it could cause on production systems would be the decrease in phytoplankton load, and the imbalance in alkalinity, calcium and other essential minerals in the crop, affecting the balance of the system. Furthermore, the consequent water clearing that occurs due to the filtration produced by C. fluminea may increase predation by birds (Aldridge et al 2008, Lodeiros and Torres 2018, Lodeiros et al 2019).

Given the potential threat of the invasive species C. fluminea, it is crucial to monitor aquaculture systems to prevent its establishment. In systems already invaded by this species, it is equally important to establish the possible effect on said systems and surrounding ecosystems.

Acknowledgements

Partial financial support was received by GD-DEGG from Agencia Nacional de Promoción Científica y Tecnológica (PICT-2019-01417); GD-DEGG from Universidad Nacional de La Plata (UNLP 11/N927); DEGG-GD from Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 1966) and CL from Invasive mollusk species (exotic and native) in shrimp farming systems in Ecuador Project. This work is part of the research carried out by the eMIAS (South American Alien Molluscs Specialist Group, emiasgroup.wixsite.com/emias) of which CL, GD and DEGG are members

References

Aldridge DC, Muller SJ, 2001. The Asiatic clam, Corbicula fluminea, in Britain: current status and potential impacts. Journal of Conchology 37(2), 177-183.
Aldridge DC, Salazar M, Serna A, Cock J, 2008. Density dependent effects of a new invasive false mussel, Mytilopsis trautwineana (Tryon 1866), on shrimp, Litopenaeus vannamei (Boone 1931), aquaculture in Colombia. Aquaculture 281, 34-42. DOI: 10.1016/j.aquaculture.2008.05.022
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, 1990. Basic local alignment search tool. Journal of Molecular Biology 215(3), 403-410. DOI: 10.1016/S0022-2836(05)80360-2
Araujo R, Moreno D, Ramos MA, 1993. The Asiatic clam Corbicula fluminea (Müller, 1774) (Bivalvia: Corbiculidae) in Europe. American Malacological Bulletin 10, 39-49.
Beasley CR, Tagliaro CH, Figueiredo WB, 2003. The occurrence of the Asian clam Corbicula fluminea in the lower Amazon basin. Acta Amazonica 33(2), 317-324.
Belz CE, Darrigran GA, Mäder Netto OS, Boeger WA, Justiniano Ribeiro P, 2012. Analysis of dispersion vectors in Inland Waters: The case of the invading bivalves in South America. Journal of Shellfish Research 31(3), 777-784. DOI: 10.2983/035.031.0322
Beran L, 2000. First record of Corbicula fluminea (Mollusca: Bivalvia) in the Czech Republic. Acta Societatis Zoologicae Bohemicae 64, 1-2.
Bespalaya YV, Aksenova OV, Kropotin AV, Shevchenko AR, Travina OV, 2021. Reproduction of the androgenetic population of the Asian Corbicula Clam (Bivalvia: Cyrenidae) in the Northern Dvina River Basin, Russia. Diversity 13(7), 316. DOI: 10.3390/d13070316
Bij de Vaate A, Greijdanus-Klaas M, 1990. The Asiatic clam, Corbicula fluminea (Müller, 1774) (Pelecypoda, Corbiculidae), a new immigrant in The Netherlands. Bulletin Zoologisch Museum, 12(12): 173-178.
Bij de Vaate A, Hulea O, 2000. Range extension of the Asiatic clam Corbicula fluminea (Müller 1774) in the River Danube: first record from Rumania. Lauterbornia 38, 23-26.
Cao L, Damborenea C, Penchaszadeh PE, Darrigran G, 2017. Gonadal cycle of Corbicula fluminea (Bivalvia: Corbiculidae) in Pampean streams (Southern Neotropical Region). Plos One 12(10), e0186850. DOI: 10.1371/journal.pone.0186850
Cárdenas M, 2011. Estructura comunitaria de macroinvertebrados en el río Baba. Julio de 2010 a julio 2011. Instituto Nacional de Pesca, Guayaquil.
Carranza A, Agudo-Padrón I, Collado GA, Damborenea C, Fabres A, Gutiérrez Gregoric DE, Lodeiros C, Ludwig S, Pastorino G, Penchaszadeh P, Salvador RB, Spotorno P, Thiengo S, Vidigal T, Darrigran G, 2023. Socio-ecological impacts of non-native and transplanted aquatic molluscs species in South America. What do we really know? Hydrobiologia 850, 1001-1020. DOI: 10.1007/s10750-023-05164-z
Ciutti F, Cappelletti C, 2009. First record of Corbicula fluminalis (Müller, 1774) in Lake Garda (Italy), living in sympatry with Corbicula fluminea (Müller 1774). Journal of Limnology 68(1), 162-165. DOI: 10.4081/jlimnol.2009.162
Clusa L, Miralles L, Basanta A, Escot C, García-Vázquez E, 2017. eDNA for detection of five highly invasive molluscs. A case study in urban rivers from the Iberian Peninsula. Plos One 12(11), e0188126. DOI:  10.1371/journal.pone.0188126
Collado GA, Vidal MA, Torres-Díaz C, Cabrera FJ, Araya JF, Darrigran G, 2020. Morphological and molecular identification of the invasive freshwater snail Physa acuta (Gastropoda: Physidae) into Llanquihue Lake, Chilean Patagonia. Anais da Academia Brasileira de Ciências 92 (Suppl. 2), 1-11 e20181101. DOI: 10.1590/0001-3765202020181101
Conde A, Solís-Coello P, 2017. From the estuary to the Amazon basin: Corbicula fluminea (O. F. Müller, 1774) (Bivalvia Venerida Cyrenidae). Ecuador Biodiversity Journal 8(4), 915-922.
Counts CL, 1981. Corbicula fluminea (Bivalvia: Sphaeriacea) in British Columbia. The Nautilus 95, 12-13.
Crespo D, Dolbeth M, Leston S, Sousa R, Pardal MA, 2015. Distribution of Corbicula fluminea (Müller, 1774) in the invaded range: a geographic approach with notes on species traits variability. Biological Invasions 17,  2087-2101. DOI 10.1007/s10530-015-0862-y
Csányi B, 1999. Spreading invaders along the Danubian highway: first record of Corbicula fluminea (O. F. Müller, 1774) and C. fluminalis (O. F. Müller, 1774) in Hungary (Mollusca: Bivalvia). Folia Historico Naturalia Musei Matraensis 23, 343-345.
Darrigran G, 1992. Nuevos datos acerca de la distribución de las especies del género Corbicula (Bivalvia, Sphaeriacea) en el área del Río de la Plata, República Argentina. Notas Museo La Plata 21 (Zool. 210), 143-148.
Darrigran G, 2002. Potential impact of filter-feeding invaders on temperate inland freshwater environments. Biological Invasions 4, 145-156. DOI: 10.1023/A:1020521811416
Darrigran G, Agudo-Padrón I, Baez P, Belz C, Cardoso F, Carranza A, Collado G, Correoso M, Cuezzo MG, Fabres A, Gutiérrez Gregoric DE, Letelier S, Ludwig S, Mansur MC, Pastorino G, Penchaszadeh P, Peralta C, Rebolledo A, Rumi A, Santos S, Thiengo S, Vidigal T, Damborenea C, 2020. Non- native mollusks throughout South America: emergent patterns in an understudied continent. Biological Invasions 22(3), 853-871. DOI: 10.1007/s10530-019-02178-4
De La Hoz Aristizábal MV, 2008. Primer registro en Colombia de Corbicula fluminea (Mollusca: Bivalvia: Corbiculidae), una especie invasora. Boletín de Investigaciones Marinas y Costeras 37(1), 195-200. http://hdl.handle.net/1834/3494
Diagne C, Leroy B, Vaissière ACh, Gozlan RE, Roiz D, Jarić I, Salles JM, Bradshaw CJA, Courchamp F, 2022. High and rising economic costs of biological invasions worldwide. Nature 608, E35. DOI: 10.1038/s41586-021-03405-6
Domagata J, Labecka AM, Pilecka-Rapacz M, Migdalska B, 2004. Corbicula fluminea (O. F. Müller, 1774) (Bivalvia: Corbiculidae) a species new to the Polish malacofauna. Folia Malacológica 12(3), 145-148. DOI: 10.12657/folmal.012.011
Fabbri R, Landi L, 1999. Nuove segnalazioni di molluschi, crostacei e pesci esotici in Emilia-Romagna e prima segnalazione di Corbicula fluminea (O. F. Müller) in Italia (Mollusco Bivalvia, Crustacea Decapoda, Osteicthyes Cypriniformes). Quaderni di Studi e Notizie di Storia Naturale della Romagna 12, 9-20.
Felsenstein J, 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39(4), 783-791. DOI: 10.2307/2408678
Fischer W, Schultz P, 1999. Erstnachweis Corbicula cf. fluminea (O. F. Müller, 1774) (Mollusca: Bivalvia: Corbiculidae) aus Osterreich, sowie ein Nachweis von lebenden Microcolpia daudebartii acicularis (Ferussac, 1821) (Mollusca: Gastropoda: Melanopsidae) aus Bad Deutsch-Altenburg (NO, Osterreich). Club Conchylia Informationen 31(3-4), 23-26.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3(5), 294-299.
Foster AM, Fuller P, Benson A, Constant S, Raikow D, Larson J, Fusaro A, 2015. Corbicula fluminea. USGS Nonindigenous Aquatic Species Database, Gainesville, Florida. Available: http://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=92. (July 2015)
Franco JN, Ceia FR, Patrício J, Modesto V, Thompson J, Marques JC, Neto JM, 2012. Population dynamics of Corbicula fluminea (Müller, 1774) in mesohaline and oligohaline habitats: Invasion success in a Southern Europe estuary. Estuarine, Coastal and Shelf Science 112, 31-39. DOI: 10.1016/j.ecss.2011.07.014
Gama M, Crespo D, Dolbeth M, Anastácio P, 2016. Predicting global habitat suitability for Corbicula fluminea using species distribution models: The importance of different environmental datasets. Ecological Modelling 319, 163-169. DOI: 10.1016/j.ecolmodel.2015.06.001
Geller J, Meyer C, Parker M, Hawk H, 2013. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Resources 13(5), 851-61. DOI: 10.1111/1755-0998.12138.
Gomes C, Sousa R, Mendes T, Borges R, Vilares P, Vasconcelos V, Guilhermino L, Antunes A, 2016. Low genetic diversity and high invasion success of Corbicula fluminea (Bivalvia, Corbiculidae) (Müller, 1774) in Portugal. Plos One 11(7), e0158108. DOI: 10.1371/journal.pone.0158108
Guindon S, Gascuel O, 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52(5), 696-704. DOI: 10.1080/10635150390235520
Haesloop U, 1992. Establishment of the Asiatic clam Corbicula cf. fluminalis in the Tidal Weser River (N. Germany). Archiv für Hydrobiologie 126(2), 175-180. DOI: 10.1127/archiv-hydrobiol/ 126/1992/175
Hess SS, Burns DA, Boudinot FG, Brown-Lima, C, Corwin J, Foppert JD, Robinson GR, Rose KC, Schlesinger MD, Shuford RL, Bradshaw D, 2024. Ecosystems. In: New York State Climate Impacts Assessment, Chapter 5: Understanding and Preparing for Our Changing Climate: 152 (A. Stevens, Ed). New York State Energy Research and Development Authority (NYSERDA), Albany, NY, USA. https://nysclimateimpacts.org/wp-content/uploads/2024/01/Assessment-ch5-ecosystems-01-31-24.pdf
Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J, Pyšek P, Roques A, Sol D, Solarz W, Vilà M, 2008. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. Journal of Applied Ecology 45, 403-414. DOI: 10.1111/j.1365-2664.2007.01442.x
Hulme PE, 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. Journal of Applied Ecology 46, 10-18. DOI: 10.1111/j.1365-2664.2008.01600.x
Ilarri MI, Souza AT, Antunes C Guilhermino L, Sousa R, 2014. Influence of the invasive Asian clam Corbicula fluminea (Bivalvia: Corbiculidae) on estuarine epibenthic assemblages. Estuarine, Coastal and Shelf Science 143, 12-19. DOI: 10.1016/j.ecss.2014.03.017
INP (Instituto Nacional de Pesca), 2002. Características biológicas, pesqueras y socioambientales en el ecosistema del río Esmeraldas y aguas aledañas durante el 2001. Instituto Nacional de Pesca, Guayaquil.
Ituarte C, 1981. Primera noticia acerca de la introducción de pelecípodos asiáticos en el área rioplatense (Mollusca: Corbiculidae). Neotropica 27(77), 79-83.
Ituarte CF, 1994. Corbicula and Neocorbicula (Bivalvia: Corbiculidae) in the Parana, Uruguay, and Río de La Plata basins. Nautilus 107, 129-135.
Lee T, Siripattrawan S, Ituarte CF, Foighil DO, 2005. Invasion of the clonal clams: Corbicula lineages in the New World. American Malacological Bulletin 20(1), 113-122.
Lodeiros C, Torres G, 2018. Moluscos invasores en piscinas de cultivo de camarón. Aquacultura 123, 25-31.
Lodeiros C, González-Henríquez N, Cuéllar-Anjel J, Hernández-Reyes D, Medina-Alcaraz C, Quinteiro J, Rey-Méndez M, 2019. Invasion of the dark false mussel in shrimp farms in Venezuela: species identification and genetic analysis. BioInvasions Records 8(4), 838-847. DOI: 10.3391/bir.2019.8.4.12
López-Altarribra E, Garrido-Olvera L, Benavides-González F, Blanco-Martínez Z, Pérez-Castañeda R, Sánchez-Martínez JG, Correa-Sandoval A, Vázquez-Sauceda ML, Rábago-Castro JL, 2019. New records of invasive mollusks Corbicula fluminea (Müller, 1774), Melanoides tuberculata (Müller, 1774) and Tarebia granifera (Lamarck, 1816) in the Vicente Guerrero reservoir, Mexico. BioInvasions Records 8(3), 640-652. DOI: 10. 3391/bir.2019.8.3.21
Lucy FE, Karatayev AY, Burlakova LE, 2012. Predictions for the spread, population density, and impacts of Corbicula fluminea in Ireland. Aquatic Invasions 7(4), 465-474. DOI: 10.3391/ai.2012.7.4.003
Ludwig S, Darrigran G, Boeger WA, 2024. Opening the black box of the invasion of Corbicula clams (Bivalvia, Corbiculidae) in South America: a genetic and morphological evaluation. Hydrobiologia 851, 1203-1217. DOI: 10.1007/s10750-023-05378-1
Manjiu O, Shubernetski I, 2010. First record of Asian clam Corbicula fluminea (Müller, 1774) in the Republic of Moldova. Aquatic Invasions 5(Suppl. 1), S67-S70. DOI: 10.3391/ai.2010.5.S1.015
Martínez R, 1987. Corbicula manilensis molusco introducido en Venezuela. Acta Científica Venezolana38, 384- 385.
McMahon RF, 1982. The Occurrence and Spread of the Introduced Asiatic Freshwater Clam, Corbicula fluminea (Muller), in North America: 1924-1982. The Nautilus 96(4), 134-141.
McMahon RF, 1991. Mollusca: Bivalvia. In: Ecology and Classification of North American Freshwater Invertebrates: 315-399 (JH Thorpe, AP Covich, Eds). Academic Press, New York, USA.
McMahon RF, 2000. Invasive characteristics of the freshwater bivalve, Corbicula fluminea. In: Nonindigenous Freshwater Organisms: Vectors, Biology, and Impacts: 315-343 (R Claudi, JH Leach, Eds.). Lewis, Washington D.C., USA.
Minchin D, 2014. The distribution of the Asian clam Corbicula fluminea and its potential to spread in Ireland. Management of Biological Invasions 5(2), 165-177. DOI: http://dx.doi.org/10.3391/mbi.2014.5.2.10
Minchin D, Boelens R, 2018. Natural dispersal of the introduced Asian clam Corbicula fluminea (Müller, 1774) (Cyrenidae) within two temperate lakes. BioInvasions Records 7(3), 259-268. DOI: 10.3391/bir.2018.7.3.06
MNHNL (Musée national d’histoire naturelle, Luxembourg), 2000. Corbicula fluminea (O. F. Müller, 1774) in Recorder-Lux, database on the natural heritage of the Grand Duchy of Luxembourg. Musée national d’histoire naturelle, Luxembourg. URL: https://mdata.mnhn.lu
Mora E, 2005. Bioensayos en moluscos: Bioensayos de toxicidad aguda con cadmio en la especie almeja de río Corbicula sp., de la Cuenca del río Taura. Ciencias Naturales y Ambientales 1, 141-146.
Mouthon J, 1981. Sur la présence en France et au Portugal de Corbicula (Bivalvia, Corbiculidae) originaire d’Asie. Basteria 45(4/5), 109-116.
Muzzio JK, 2011. Moluscos hospederos intermediarios de Angiostrongylus cantonensis en dos provincias de Ecuador. Master’s thesis. Instituto de Medicina Tropical, Pedro Kouri. La Habana.
Paunović M, Csányi B, Knežević S, Simić V, Nenadić D, Jakovčev-Todorović D, Stojanović B, Cakić P, 2007. Distribution of Asian clams Corbicula fluminea (Müller, 1774) and C. fluminalis (Müller, 1774) in Serbia. Aquatic Invasions 2(2), 99-106. DOI: 10.3391/ai.2007.2.2.3
Pérez CHF, Serrano Cárdenas C, Simon PL, 2022. Patagonia invadida: primer registro de Corbicula fluminea (Müller, 1774) en la cuenca del río Chubut, Chubut, Argentina. Historia Natural 12(2), 165-172. https://ri.conicet.gov.ar/handle/11336/206652
Pigneur LM, Marescaux J, Roland K, Etoundi E, Descy JP, Van Doninck K, 2011. Phylogeny and androgenesis in the invasive Corbicula clams (Bivalvia, Corbiculidae) in Western Europe. BMC Evolutionary Biology 11, 147. DOI: 10.1186/1471-2148-11-147
Pigneur LM, Hedtke SM, Etoundi E, Van Doninck K, 2012. Androgenesis: a review through the study of the selfish shellfish Corbicula spp. Heredity 108, 581-591.
Prezant RS, Chalermwat K, 1984. Flotation of the bivalve Corbicula fluminea as a means of dispersal. Science 225(4669), 1491-1493. DOI: 10.1126/science.225.4669.1491
Rico A, 2009. Establecimiento en Bolivia de Bases de Datos sobre Especies Exóticas Invasoras, como parte de la Red Interamericana de Información en Biodiversidad, IABIN. Informe Final, Técnico y Financiero. Universidad Mayor de San Andrés, Bolivia.
Ries C, Pfeiffenschneider M (Eds), 2023 Corbicula fluminea (O. F. Müller, 1774). In: neobiota.lu - Invasive Alien Species in Luxembourg. National Museum of Natural History, Luxembourg. URL: https://neobiota.lu/corbicula-fluminea/ [Accessed 08/08/2023]
Sabapathy-Allen U, 2019. Corbicula fluminea (Asian clam). CABI Compendium, CABI Digital Library. DOI: 10.1079/cabicompendium.88200
Simard MA, Paquet A, Jutras C, Robitaille Y, Blier PU, Courtois R, Martel AL, 2012. North American range extension of the invasive Asian clam in a St. Lawrence River power station thermal plume. Aquatic Invasions 7(1), 81-89. DOI: 10.3391/ai.2012.7.1.009
Sousa R, Antunes C, Guilhermino L, 2008. Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview. Annales de Limnologie - International Journal of Limnology 44(2), 85-94. DOI: 10.1051/limn:2008017
Sweeney P, 2010. First record of Asian clam (Corbicula fluminea (Müller, 1774) in Ireland. Irish Naturalists’ Journal 30(2), 147-148.
Swinnen F, Leynen M, Sablon M, Duvivier L, Vanmaele R, 1998. The Asiatic clam Corbicula (Bivalvia: Corbiculidae) in Belgium. Bulletin de L'Institut Royal des Sciences Naturelles de Belgique 68, 47-53.
Torres-Zevallos U, 2018. Primeras observaciones de la “Almeja Asiática” Corbicula fluminea (Müller, 1774) (Veneroida: Cyrenidae) en una acequia del Río Mala, Lima, Perú. The Biologist (Lima) 16(2), 335-345. DOI: 10.24039/rtb2018162261
Vastrade M, Etoundi E, Bournonville T, Colinet M, Debortoli N, Hedtke SM, Nicolas E, Pigneur LM, Virgo J, Flot JF, Marescaux J, Van Doninck K, 2022. Substantial genetic mixing among sexual and androgenetic lineages within the clam genus Corbicula. Peer Community Journal: Evolutionary Biology 2: e73. DOI: 10.24072/pcjournal.180
Veitenheimer-Mendes I, 1981. Corbicula manilensis (Philippi, 1844) molusco asiático, na bacia do Jacuí e do Guaíba, Río Grande do Sul, Brasil (Bivalvia, Corbiculidae). Iheringia Série Zoológica 60, 63-74.
Veitenheimer-Mendes I, Olazarri J, 1983. Primero registros de Corbicula Megerle, 1811 (Bivalvia Corbiculidae) para el Río Uruguay. Boletín de la Sociedad Zoológica del Uruguay 1, 50-53.
Vidinova Y, Park J, Varadinova E, Tyufekchieva V, Todorov M, 2021. Invasion of Corbicula fluminea (Müller, 1774) (Bivalvia: Corbiculidae) in water bodies from the East Aegean River Basin in Bulgaria. Ecologica Montenegrina 47, 9-17. DOI: 10.37828/em.2021.47.2
Vrabec V, Cejka T, Sporka F, Hamerlik L, Kral D, 2003. First records of Corbicula fluminea (Mollusca, Bivalvia) from Slovakia with a note about its dispersion in Central Europe. Biologia, Bratislava 58/5, 942-952.
Yamada M, Ishibashi R, Kawamura K, Komaru A, 2010. Interrelationships of the freshwater clams Corbicula leana Prime, 1864 and C. fluminea (Müller, 1774) distributed in Japan inferred from shell type and 11 mitochondrial DNA Cyt b region. Nippon Suisan Gakkaishi 76(5), 926-932. (In Japanese with English abstract).
Willink PW, Chernoff B, McCullough J, 2005. A Rapid Biological Assessment of Aquatic Ecosystem of the Pastaza River Basin, Ecuador and Perú. RAP Bulletin of Biological Assessment 33, Conservation International, The University of Chicago Press, Chicago, USA.

Content appears on: